Combined Science Paper 2 FOUNDATION

Biology

These specification points will be the **major focus** of this paper.

Spec point	Concepts	CGP revision guide pages	Bitesize	YouTube
4.5.3 Hormonal Control in Humans	-definition of 'hormone' function of the tissues and organs of the endocrine system -identifying position of glands, and the hormones secreted from them -hormones involved in control of blood glucose concentration -Type 1 and Type 2 diabetes	103-107	https://www.bbc.co.uk/bit esize/guides/zq4mk2p/revi sion/1 (1 to 5)	https://www.youtube.com/ watch?v=c6olhi88KZs https://www.youtube.com/ watch?v=77oyUdNZ054
4.6.1 Reproduction	-describe the structure of DNA -define 'genome' -structure of a chromosome -definition of 'gene' -definition of key inheritance terms e.g. heterozygous, recessive allele, phenotype -construct punnett squares -determine probability -inherited disorders -make informed judgements about the economic, social and ethical issues concerning embryo screening,	113 120-125	https://www.bbc.co.uk/bit esize/guides/zycmk2p/revis ion/3 https://www.bbc.co.uk/bit esize/guides/zcdfmsg/revisi on/1	https://www.youtube.com/watch?v=wv1TQXBQ6wQ https://www.youtube.com/watch?v=zNEtVaNQ0s8 https://www.youtube.com/watch?v=mvWy5lbUoHA https://www.youtube.com/watch?v=sYPwWHszLDo
4.7.1 Adaptations, interdependence and competition	-Describe the different levels of organisation in an ecosystem -Describe the importance of interdependence and competition in a communityIdentify biotic and abiotic factors -Suggest the factors for which organisms are competing in a given habitat	141-143	https://www.bbc.co.uk/bit esize/guides/z86gpbk/revis ion/1 (1 to 7)	https://www.youtube.com/watch?v=XVD5izWXmKo https://www.youtube.com/watch?v=0mjafH5pVLA
4.7.2 Organisation of an ecosystem	-interpret food chains and webs -identify producers, consumers, predators and prey from food chains and webs -describe the carbon and water cycles	145-150	https://www.bbc.co.uk/bit esize/guides/zqskv9q/revisi on/1	https://www.youtube.com/watch?v=dRFQ8rZCK6Q https://www.youtube.com/watch?v=urzpnjwazV0
Required Practical 7: measure the population size of a common species in a habitat. Use sampling techniques to investigate the effect of a factor on the distribution of this species	-Using transects and quadrats are used by ecologists to determine the distribution and abundance of species in an ecosystemUnderstand the terms mean, mode and median -Calculate arithmetic means	147	https://www.bbc.co.uk/bit esize/guides/zqskv9q/revisi on/3	https://www.youtube.com/watch?v=2MW6nwf80XM https://www.youtube.com/watch?v=RhMOCxXcDrQ https://www.youtube.com/watch?v=yLHz2Ea10Mg&t=2s

Exam date: 15th June

These specification points will **not be assessed** on this paper.

Spec point	CGP Revision Guide Pages
4.5.2 The human nervous system	98-101
4.5.3.3 Hormones in human reproduction	108-109
4.5.3.4 Contraception	110-111
4.6.1.1 Sexual and asexual reproduction	114-115
4.6.1.2 Meiosis	116-117
4.6.1.6 Sex Determination	118
4.6.2.1 Variation 4.6.2.2 Evolution 4.6.2.3 Selective Breeding 4.6.3.3 Extinction 4.6.3.4 Resistant Bacteria	126-133
4.7.1.4 Adaptations	
4.7.3.1 Biodiversity	
4.7.3.3 Land Use	
4.7.3.4 Deforestation	
4.7.3.5 Global Warming	
4.7.3.6 Maintaining Biodiversity	

Chemistry

These specification points will be the **major focus** of this paper.

Spec point	Concepts	CGP revision guide pages	Bitesize	YouTube
5.6.1 Rate of Reaction 5.6.2 Reversible reactions and dynamic equilibrium	-Calculating the rate of a reaction -Describe collision theory -Define activation energy -Describe and explain the factors that increase the rate of reaction -Describe and explain the effect of catalysts on rate of reaction -identify and give examples of reversible reactions -apply the conservation of energy to reversible reactions -define dynamic equilibrium	233-245	https://www.bbc.co.uk/bit esize/guides/zpkp7p3/revis ion/1 https://www.bbc.co.uk/bit esize/guides/z32bpbk/revis ion/1 Only page 1	https://www.youtube.com/watch?v=UkrBJ6-uGFA https://www.youtube.com/watch?v=GCR5xeduq2o https://www.youtube.com/watch?v=-4HXaUBbv04 https://www.youtube.com/watch?v=hel8fQjxc08 https://www.youtube.com/watch?v=66qcNNJFy6E
Required Practical 11: investigate how concentration affects the rates of reaction by a method involving measuring the volume of a gas produced/change in colour	-identify independent, dependent and control variables -describe how to measure the dependent variable -analyse results and draw conclusions from graphed data -calculate rate of reaction from data	237-241	https://www.bbc.co.uk/bit esize/guides/zpkp7p3/revis ion/6	https://www.youtube.com/ watch?v=N5p06i9ilmo https://www.youtube.com/ watch?v=Gl6LVl7oAlU
5.7.1 C arbon compounds as fuels and feedstock	-describe crude oil as a mixture of different length hydrocarbons -define the term hydrocarbon -identify the first 4 alkanes from their chemical formula and name them -Describe the trend in properties as hydrocarbon chain length increases -Describe and explain the process of fractional distillation -describe the process of cracking -describe the use of alkenes	246-253	https://www.bbc.co.uk/bit esize/guides/zxd4y4j/revisi on/1	https://www.youtube.com/watch?v=CX2IYWggEBc https://www.youtube.com/watch?v=3I7yCkSXPos https://www.youtube.com/watch?v=7AWwjKbRao
5.8.1 Purity, formulations and chromatography	-Define the term pure substance in chemistry -Use melting and boiling point data to identify pure and impure substances -Define the term formulation and give examples	254-256	https://www.bbc.co.uk/bit esize/guides/zp2wrwx/revi sion/1	https://www.youtube.com/ watch?v=3oJxWwcnfJY
Required Practical 12: investigate how paper chromatography can be used to separate and tell the difference between coloured substances.	-Describe the properties of the mixtures that chromatography can be used to separate -Describe and explain the experimental process of chromatography -Explain how substances are separated using chromatography -Interpret chromatograms + -Calculate Rf values	256-258	https://www.bbc.co.uk/bit esize/guides/zp2wrwx/revi sion/3	https://www.youtube.com/watch?v=TdJ57SQ6GAQhttps://www.youtube.com/watch?v=pnTGNAfu6GE

Spec point	Concepts	CGP revision guide pages	Bitesize	YouTube
5.9.1 The composition and evolution of the Earth's Atmosphere	-describe the composition of the current atmosphere -describe the composition of the early atmosphere and explain theories of how the early atmosphere formed -explain how the early atmosphere changed to that of the present atmosphere	262	https://www.bbc.co.uk/bit esize/guides/z9pk3k7/revisi on/1	https://www.youtube.com/ watch?v=t1Z3GlNldLA https://www.youtube.com/ watch?v=l0h -3M0Pso
5.9.3 Common atmospheric pollutants and their sources	-State the atmospheric pollutants released into the atmosphere from the complete and incomplete combustion of fossil fuels -Describe the negative impacts of these pollutants on health and the environment	267	https://www.bbc.co.uk/bit esize/guides/zq3797h/revis ion/1	https://www.youtube.com/ watch?v=yLp6LOgPHmI
5.10.1 Using the Earth's resources and obtaining potable water	-Describe the renewable and non- renewable resources that we get form the Earth and its atmosphere -Define the term potable water -Describe how potable water can be producedDescribe the differences in the treatment of waste water, salt water and ground water	270-272 276	https://www.bbc.co.uk/bit esize/guides/zswfxfr/revisi on/1 https://www.bbc.co.uk/bit esize/guides/zg6cfcw/revisi on/1	https://www.youtube.com/watch?v=-XczTGavTZUhttps://www.youtube.com/watch?v=n7pYRQs20bl

Exam date: 20th June

These specification points will not be assessed on this paper.

Spec point	CGP Revision Guide Pages
5.9.2 Carbon dioxide and methane as greenhouse gases	156-157

These areas **may still be assessed** in multiple choice questions/linked to a previous answer, so cannot be completely ignored in your revision.

Content	CGP Revision Guide Pages
Tests for Gases	259
LCA	273

Physics

	Foundation paper 2	
	MAJOR FOCUS	Revision
		Pages
6.5.1 Forces and their interactions	 Scalar quantities – magnitude only (mass, time, temperature, speed, distance) Vector quantities – magnitude and direction (weight, force, velocity, acceleration, displacement) Contact forces – objects physically touching – friction, drag, tension, normal contact 	347-349
	 Non-contact forces – not touching – magnetism, gravity, electrostatic force Mass is constant, weight is the force acting on a mass due to gravity, with weight and 	
	 mass being directly proportional Weight = mass x gravitational field strength (W = m x g) Multiple forces acting on an object can be replaced by a single, resultant force 	
6.5.4.1	Explain difference between distance (scalar) and displacement (vector)	356-360
Describing motion along a line	 Explain difference between speed (scalar) and displacement (vector) Typical values (all can vary) Walking ≈ 1.5 m/s 	
	 Running ≈ 3 m/s Cycling ≈ 6 m/s Sound in air ≈ 330 m/s 	
	 For object moving at constant speed, distance can found using distance = speed x time (s = v x t) 	
	 A journey in a straight line can be represent by a distance-time graph Speed can be found from the gradient of the distance-time graph Acceleration = change in velocity/time (a = v-u/t) 	
	 Acceleration can be calculated from gradient of velocity-time graph (Final velocity)² – (initial velocity)² = 2 x acceleration x distance (v² – u² = 2 x a x s) Falling objects accelerate due to force of gravity. Eventually weight = drag, resultant force = zero and object reaches terminal velocity 	
6.5.4.2 Forces,	 Newton's First Law: If the resultant force acting on an object is zero and: 	362-363
accelerations and Newton's	 Object is stationary, it remains stationary Object is moving, it continues moving at same velocity 	
laws of motion	 Velocity only changes if force acts on object Newton's Second Law: acceleration is proportional to resultant force 	
	 Force = mass x acceleration (F = m x a) Newton's Third Law – when two objects interact, they exert an equal and opposite force on each other 	
6.5.4.3 Forces	Stopping distance = thinking distance + braking distance	368-369
and Braking	 Thinking distance – people naturally having different reaction times, tiredness, drugs, alcohol, distractions, speed of car 	
	 Braking distance – adverse road conditions (rain/ice/snow) condition of brakes, condition of tyres, speed of car 	
	 When brakes pressed, friction between brakes and wheel transfers energy from kinetic store to thermal store (car slows, brakes get hot) 	
6.6.2	Large deceleration can lead to brakes overheating/loss of control of car All EM ways are transverse, travel at speed of light (2 × 108 m/s) in vacuum or air.	378-383
6.6.2 Electromagnetic	 All EM waves are transverse, travel at speed of light (3 x 10⁸ m/s) in vacuum or air Grouped by wavelength/frequency 	3/6-383
waves	 In order, from long wavelength (low frequency) to short (high frequency) – radio, 	
	micro, infra-red, visible, UV, x-ray, gamma)	
	Refraction diagrams – less dense to more dense, moves towards normal – more	
	dense to less dense, moves away from the normal	
	UV/X-ray/Gamma – can have hazardous effort on human tissue, depending on size of	
	dose/type of radiation.	
	 Radiation measured in Sieverts – 1000 milli Sievert (1000 mSV) = 1 Sievert (1 Sv) UV can cause skin to age prematurely and lead to skin cancer. X-ray/gamma both ionising – can cause cancer/mutation of genes. 	

	the following	
	Uses of EM spectrum	
	o Radio – TV and radio	
	 Microwave – satellite, wi-fi, mobile phone, heating food 	
	 Infra-red – electrical heaters, cooking food, IR cameras, remote controls 	
	 Visible light – telescopes, fibre optics 	
	 UV – energy efficient lamps, sun-tan beds 	
	 X-ray & Gamma – medical imaging and treatments 	
6.7.1	Magnets have north and south poles	386-387
Permanent and	 Poles are where magnets are strongest 	
induced	 North & north/south & south repel 	
magnetism,	North & south attract	
magnetic forces	Permanent magnet – has own magnetic field	
and fields	 Induced magnet – becomes a magnet when placed in magnetic field. Always causes 	
	force of attraction. Loses magnetism quickly when removed from magnetic field	
	 Region around magnet where force acts is called magnetic field – strength of field 	
	depends on distance from magnet	
	Direction of field line is north to south	
6.7.2 The motor	When a current flows through a wire a magnetic field is produced around the wire.	388-389
effect	 Shaping the wire into a solenoid (coil) increases the strength of the magnetic field – 	300-303
circu	the field inside the solenoid is strong and uniform	
	 Adding an iron core increases the strength of the solenoid – this is an electromagnet 	
	When a wire carrying an electromagnet is placed in a magnetic field the field and	
	conductor exert a force on each other – this is the motor effect	
	Fleming's left-hand rule show the direction of the force (thumb), field (first finger)	
	and current (middle finger)	
	 Force = magnetic flux density x current x length (F = B x I x I) 	
	 A coil carrying a current in a magnetic field will rotate – this is the basis of electric 	
	motors	
Required	Investigate how the amount of infra-red radiation absorbed or radiated by a surface	381-382
Practical	depends on the nature of the surface	
	Low Tariff/Linked Topics	2.40
6.5.2 Work	 Work is done on an object when a force causes it to move. 	349
done and	Work done = force x distance (W = F x s)	
energy	 1 joule of work done = 1 Newton metre 	
transfer	 Work done against friction causes a rise in temperature 	
6.6.1 Waves in	 Transverse – vibrate perpendicular (90°) to direction of energy transfer. 	371-374
air, fluids and	Peaks/troughs. Water waves, all electromagnetic waves.	
solids	 Longitudinal – vibrate parallel to direction of energy transfer. 	
	Compressions/rarefactions. Needs particles (mechanical). Sound	
	waves/ultrasound	
	waves/ultrasound.	
	 Amplitude – distance from rest point of wave to peak. 	
	 Amplitude – distance from rest point of wave to peak. Wavelength – distance from peak to peak 	
	 Amplitude – distance from rest point of wave to peak. Wavelength – distance from peak to peak Frequency – number of waves passing a point per second 	
	 Amplitude – distance from rest point of wave to peak. Wavelength – distance from peak to peak Frequency – number of waves passing a point per second Period = 1/frequency (T = 1/f) 	
	 Amplitude – distance from rest point of wave to peak. Wavelength – distance from peak to peak Frequency – number of waves passing a point per second Period = 1/frequency (T = 1/f) Wave speed = frequency x wavelength (v = f x λ) 	
	 Amplitude – distance from rest point of wave to peak. Wavelength – distance from peak to peak Frequency – number of waves passing a point per second Period = 1/frequency (T = 1/f) Wave speed = frequency x wavelength (v = f x λ) NOT ON EXAM 	254.252
6.5.3 Forces	 Amplitude – distance from rest point of wave to peak. Wavelength – distance from peak to peak Frequency – number of waves passing a point per second Period = 1/frequency (T = 1/f) Wave speed = frequency x wavelength (v = f x λ) NOT ON EXAM Give examples of forces involved in stretching and compressing 	351-353
6.5.3 Forces and elasticity	 Amplitude – distance from rest point of wave to peak. Wavelength – distance from peak to peak Frequency – number of waves passing a point per second Period = 1/frequency (T = 1/f) Wave speed = frequency x wavelength (v = f x λ) NOT ON EXAM 	351-353
	 Amplitude – distance from rest point of wave to peak. Wavelength – distance from peak to peak Frequency – number of waves passing a point per second Period = 1/frequency (T = 1/f) Wave speed = frequency x wavelength (v = f x λ) NOT ON EXAM Give examples of forces involved in stretching and compressing 	351-353
	 Amplitude – distance from rest point of wave to peak. Wavelength – distance from peak to peak Frequency – number of waves passing a point per second Period = 1/frequency (T = 1/f) Wave speed = frequency x wavelength (v = f x λ) NOT ON EXAM Give examples of forces involved in stretching and compressing Describe difference in elastic and inelastic deformation 	351-353
	 Amplitude – distance from rest point of wave to peak. Wavelength – distance from peak to peak Frequency – number of waves passing a point per second Period = 1/frequency (T = 1/f) Wave speed = frequency x wavelength (v = f x λ) NOT ON EXAM Give examples of forces involved in stretching and compressing Describe difference in elastic and inelastic deformation Extension of spring is directly proportional to force applied as long of limit of proportionality not exceeded 	351-353
	 Amplitude – distance from rest point of wave to peak. Wavelength – distance from peak to peak Frequency – number of waves passing a point per second Period = 1/frequency (T = 1/f) Wave speed = frequency x wavelength (v = f x λ) NOT ON EXAM Give examples of forces involved in stretching and compressing Describe difference in elastic and inelastic deformation Extension of spring is directly proportional to force applied as long of limit of proportionality not exceeded Force = spring constant x extension (F = k x e) 	351-353
	 Amplitude – distance from rest point of wave to peak. Wavelength – distance from peak to peak Frequency – number of waves passing a point per second Period = 1/frequency (T = 1/f) Wave speed = frequency x wavelength (v = f x λ) NOT ON EXAM Give examples of forces involved in stretching and compressing Describe difference in elastic and inelastic deformation Extension of spring is directly proportional to force applied as long of limit of proportionality not exceeded 	351-353